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Political scientists often study dollar-denominated outcomes that are zero for some observations. These

zeros can arise because the data-generating process is granular: The observed outcome results from

aggregation of a small number of discrete projects or grants, each of varying dollar size. This article de-

scribes the use of a compound distribution in which each observed outcome is the sum of a Poisson–

distributed number of gamma distributed quantities, a special case of the Tweedie distribution. Regression

models based on this distribution estimate loglinear marginal effects without either the ad hoc treatment of

zeros necessary to use a log-dependent variable regression or the change in quantity of interest necessary

to use a tobit or selection model. The compound Poisson–gamma regression is compared with commonly

applied approaches in an application to data on high-speed rail grants from the United States federal

government to the states, and against simulated data from several data-generating processes.

1 Introduction

Political scientists frequently fit regression models to nonnegative data denominated in units of
dollars or other currencies, but in which there are at least some zero outcomes. Such data are
particularly prevalent in studies of the distribution of political contributions, domestic spending,
and foreign aid. Researchers studying these topics have adopted a variety of data analysis
strategies. Some studies employ linear regression analyses on raw or per-capita dollars (e.g.,
Maizels and Nissanke 1984). Other studies employ linear regression models for log dollars,
which requires a “fix” to deal with the fact that log 0 is undefined. Several such fixes are
employed, including dropping observations with zero outcomes, defining an arbitrary log-scale
level for the zero outcomes (e.g., Kuziemko and Werker 2006; Dollar and Levin 2006; Younas
2008), or using a tobit model that treats zeros as censored below some cutoff (e.g., Alesina and
Dollar 2000; Fleck and Kilby 2001; Alesina and Weder 2002; Berthelemy and Tichit 2004). Another
group of studies uses selection models (Heckman 1976, 1979) that separately model the fact of and
the magnitude of nonzero outcomes (e.g., McGillivray and Oczkowski 1992; Balla et al. 2002;
Neumayer 2003; Berthelemy 2006; Fleck and Kilby 2006; de Mesquita and Smith 2007).

Some of these studies explicitly check whether their substantive conclusions are stable across
several of these specifications. Such checks are prudent, because all of these approaches have
potential problems. Regression on dollar amounts (whether total or per-capita) imposes a linear
model for the aggregation of marginal effects that is often implausible, as well as ignoring the zero
bound on the outcome. Dropping zero dollar observations in a log-dependent variable regression
changes the population being studied to nonzero outcomes. Placing zeros at (or below via tobit) a
specific point on the log dollar scale creates outliers at arbitrarily determined points on the outcome
scale. Tobit and selection models change the population of interest in a potentially undesirable
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way: estimating marginal effects over a counterfactual population of nonzero outcomes that includes
the observations that were actually observed as zeros. None of these “fixes” allow scholars to estimate
log-scale additive (loglinear) regression models for the entire set of actual observations.

This article describes an alternative approach to analyzing this kind of data, based on the idea
that observed outcomes result from the additive aggregation of a nonnegative integer number of
dollar amounts, each of varying dollar size. Additive aggregation of discrete allocation decisions
(e.g., projects, grants, donations) is often a substantively plausible model, and is one that can
predict the exact zeros that are often observed. Such processes yield compound distributions that
are continuous, positive, and have a point mass at zero. Zeros are assumed to arise because some
units receive no projects, but for units that do receive at least one project, the observation is the
cumulative dollar magnitude of all projects rather than the project count.

This article focuses on the use of compound Poisson–gamma processes to generate this granular
structure. Building on pre-existing research on compound Poisson–gamma distributions (see the
review in Smyth 1996), Jorgensen and de Souza (1994) proposed the use of a generalized linear
model (GLM) with a Tweedie distributed outcome to analyze this kind of data. Tweedie distribu-
tions are three-parameter exponential family distributions that can take the form of more familiar
exponential family distributions—including the normal, Poisson, and gamma—for particular
values of an index parameter (Tweedie 1984). Applied research has mostly employed the Tweedie
in the range of index parameter values corresponding to the compound Poisson–gamma. This
approach has been applied by scholars studying actuarial data (e.g., Jorgensen and de Souza
1994), meteorological data (e.g., Dunn 2004), and fisheries data (e.g., Shono 2008). In all these
cases, certain kinds of outcomes—total insurance payouts consisting of multiple claims, total pre-
cipitation accumulated from multiple storms, total catch consisting of multiple fish—are naturally
viewed as the cumulative size of a discrete number of objects, each drawn from a size distribution.

The compound Poisson–gamma regression has a particularly useful feature for descriptive
research: The coefficients have the same loglinear interpretation for the expected outcome as coef-
ficients from a log-dependent variable regression. In Section 2, I describe how this property arises
from compounding separate Poisson and gamma regressions for the number and size of the discrete
number of projects. Under a particular restriction on the relative scaling of the number and size of
projects as a function of covariates, the compound Poisson–gamma can be fit using standard GLM
fitting procedures (Jorgensen and de Souza 1994). For many applications, this approach to esti-
mation is adequate, and is very quickly executed in exploratory analysis. However, the restriction
that yields this version of the model is not required to maintain the convenient interpretation of
coefficients as loglinear for E[yi]. Models that allow for separate scaling of project number and size
can be estimated either by the saddlepoint approximation procedure for the double Tweedie GLM
described by Smyth and Jorgensen (2002) or by directly maximizing the Tweedie likelihood using
recent advances in computation of the Tweedie density function (Dunn and Smyth 2008). This
article uses the latter approach, which facilitates computation of robust or model-based standard
errors and profile likelihood confidence intervals. A supplementary appendix describes existing R
packages, as well as an R package from the author, that include code for fitting these models.

In Section 3, I compare the compound Poisson–gamma regression model to other commonly
applied models in analyzing the distribution of High-Speed Rail projects in the United States in
2010 and 2011.1 The commonly applied strategies of placing zeros at (or below via tobit) an
arbitrary threshold such as log $1¼ 0 can perform particularly poorly. By comparison, dropping
zeros, using a tobit with a cutoff just below the nonzero data or a selection model all perform
reasonably, though they estimate a different quantity of interest and are less efficient than the
compound Poisson–gamma in this example. In Section 4, I present results of a limited set of
Monte Carlo simulations to show that the compound Poisson–gamma regression estimator can
recover correct marginal effects even when the true error distribution deviates substantially from
the assumed compound Poisson–gamma. In Section 5, I conclude by discussing the appropriate

1Benjamin E. Lauderdale, “Replication Data for Compound Poisson–Gamma Regression Models for Dollar Outcomes
That Are Sometimes Zero,” http://hdl.handle.net/1902.1/17924, IQSS Dataverse Network.
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scope of substantive application for these methods, particularly focusing on the comparison to tobit
and selection models. I argue that researchers have often adopted the latter models for bad reasons,
ignoring the fact that they involve estimating effects within counterfactual populations that are
difficult to identify and not always of substantive interest. Thus, even when the distributional
assumptions of the compound Poisson–gamma model are violated, the fact that the model esti-
mates loglinear marginal associations of covariates with the actual outcome may make it the most
appropriate model for some applications.

2 Specification and Estimation

To derive the compound Poisson–gamma regression model, we begin by assuming that observed
dollar outcomes arise from additive aggregation of a nonnegative integer number of projects, each
of which has a positive magnitude in dollars. We further assume that the number of projects ni for
unit i is Poisson distributed, that each project’s dollar size zij within unit i is gamma distributed,
and that the number and size of the projects are independent.2 These assumptions yield a
compound Poisson–gamma distribution for the observable outcome yi that is specified by the
following equations:

pðnij�pÞ ¼
�nip e

��p

ni!
; �p40 ð1Þ

pðzijj�g; �Þ ¼
1

zij�ð�Þ

�zij
�g

� ��
e
�
�zij
�g ; �g40; �40 ð2Þ

yi ¼

Pni
j¼1 zij if ni40

0 if ni ¼ 0:

�
ð3Þ

Because of the independence of the Poisson and gamma processes described by Equations 1 and 2,
the expected level of spending is simply E [yi]¼E [ni] E [zij]¼ �p�g. This compound distribution
is a special case of the Tweedie distribution. The standard parameterization of the Tweedie
distribution is in terms of the expected value �, plus a “dispersion” parameter f and an “index”
or “power” parameter � (see Tweedie 1984; Jorgensen and de Souza 1994). This parameteriza-
tion can be derived from the Poisson and gamma parameterizations given above by the

following change of variables: �¼ �p�g, � ¼
�p

1���g
2��

2�� , and � ¼ �þ2
�þ1, where the parameter domains

are �� 0, f� 0, and 1<�� 2.3 The variance of the compound Poisson–gamma distribution is
Var[yi]¼f��.4

When estimated separately, link functions for Poisson and gamma regressions can be specified
such that both yield loglinear marginal associations of the expected outcome with covariates.5 If we
parameterize each of these component processes in a particular way, we can aggregate them into a
compound Poisson–gamma regression with the same coefficient interpretation. Where xi is a vector
of covariates for unit i and � and � are vectors of coefficients,

�p ¼ e
xið���Þ

2 ð4Þ

�g ¼ e
xið�þ�Þ

2 ð5Þ

2Section 4 explores the performance of the MLE estimator based on these distributions in several situations where the
true data-generating process deviates from the assumptions.

3Other values of the Tweedie index parameter � yield probability densities, but they are not compound Poisson-gamma
distributions, and are consequently not of interest here.

4Note that what is substantively important is the granularity of the compound process, not the particular choice of the
Poisson and gamma distributions. The compound Poisson–gamma turns out to have attractive properties for estima-
tion, but with modern computing other possibilities can be explored. In particular, the one-parameter Poisson distri-
bution is somewhat restrictive. The author has done some exploratory analysis with a negative binomial, but this makes
computation far more difficult and is unlikely to make much difference in most applications. The gamma distribution is
of less concern, since it is a two-parameter distribution.

5Loglinear marginal associations result from the canonical link for the Poisson, but not the gamma.
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� ¼ �p�g ¼ exi� ð6Þ

� ¼
e
1��
2 xið���Þ � e

2��
2 xið�þ�Þ

2� �
: ð7Þ

Thus, the � coefficients describe the log-scale marginal associations of the covariates xi with the
expected dollar outcomes, while the � coefficients describe how covariates vary in the extent to
which they predict the size versus the number of the discrete grants or projects. The implicit
marginal associations with size are (�þ �)/2, while those with number are (�� �)/2.

Since E [yi] does not depend on �, it is possible to estimate the model with the restriction that
� ¼ 0 for all but the constant term in xi.

6 This yields the GLM model of Jorgensen and de Souza
(1994), which assumes common scaling for both size and number as a function of covariates. I will
refer to this restriction hereafter as the “single equation model” and the unrestricted model as the
“double equation model,” following the distinction between single and double GLMs (Smyth and
Jorgensen 2002). Both models assume E yi½ � ¼ exi�, but the single equation model is more restrictive
with respect to the error distribution around that level. Regardless of whether the single equation or
double equation model is estimated, the � coefficients are the key quantities of interest because they
are the marginal associations with the mean dollar outcome. Because only the � coefficients predict
E[yi], they can be more precisely estimated than the � coefficients, which only describe variation in
higher moments.

The full likelihood function for the compound Poisson–gamma regression is most easily written
in terms of the Tweedie distribution with a parameter restriction. Where the Tweedie distribution
function is given by T W �; �; �ð Þ, the likelihood for the observed dollar outcomes yi is

L �; �; �jy; xð Þ ¼
YN
i¼1

T W exi�;
e
1��
2 xið���Þ � e

2��
2 xið�þ�Þ

2� �
; �

 !
ð8Þ

15� � 2: ð9Þ

A range of standard estimation approaches can be used in estimating this model, especially in its
single equation form. Jorgensen and de Souza (1994) estimate the single equation model as a GLM
using iteratively reweighted least squares, Smyth and Jorgensen (2002) estimate the double equa-
tion model as a double GLM (Smyth 1989), and Swan (2006) estimates the single equation model
using generalized estimating equations to allow for clustered errors. More recently, Dunn and
Smyth (2008) introduced numerical methods for quickly calculating the Tweedie density using
Fourier inversion of the characteristic functions, facilitating estimation by methods that require
direct calculation of the likelihood function. The R package “eliot,” maintained by the author of
this article, includes a function CPGregression that estimates the single and double equation models
described above by MLE, using general purpose optimizers, returning model-based and robust
Wald standard errors as well as profile likelihood confidence intervals. For further details on fitting
these models, see the supplementary appendix to this article.

3 Application: US High-Speed Rail Project Distribution

Among the many projects funded by the 2009 American Recovery and Reinvestment Act
(ARRA), $8 billion was allocated to high-speed rail projects. In response to this allocation, the
governors of 34 states applied for projects totaling $55 billion. On 28 January 2010, just under $8
billion was allocated to 28 of these proposed construction projects, a general upgrade program on
the Northeast Corridor ($112 million) and a set of small planning projects across a range of states.7

In the subsequent 16 months, the list of active projects changed in composition for several reasons.8

6Fixing the � coefficient on the constant term to zero would imply that the average number and average dollar size of
projects in dollars are numerically equal, which would only be a sensible assumption in an extremely peculiar situation.

7http://www.whitehouse.gov/files/documents/100128_1400-HSRAwards-Summary_FRA%20Revisions.pdf
8The data on 2011 projects were downloaded during June 2011 from http://www.fra.dot.gov/rpd/HSIPR/462.shtml.
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A further $2.5 billion was allocated for high-speed rail by Congress in the FY 2010 budget. New

Republican governors in Wisconsin, Ohio, and Florida rejected projects in their states that had

been requested by previous officeholders.9 The money from these rejected projects was subsequently

reallocated to high-speed rail projects in other states.
Since planning projects had not been specified as of January 2010, I exclude them from subse-

quent analysis.10 Thus, the January 2010 data consist of thirty-one construction projects across

twenty-three states and the June 2011 data consist of thirty-six construction projects across sixteen

states. Researchers typically analyze data aggregated over relevant political geographies, and the

compound Poisson–gamma regression is designed for that kind of application. The fact that we can

observe the aggregation of state-level rail grant receipts from individual project data indicates that

the motivating story for the model fits the data-generating process in this case; however, the

compound Poisson–gamma regression analysis uses the data after aggregation to the state level,

which is the kind of data more typically available to researchers.
Before including covariates, it makes sense to check how well the compound Poisson–gamma fits

the raw data, and to compare that fit to the lognormal distributions that are typically assumed. As

Fig. 1a shows, the fit of the compound Poisson–gamma to the data is quite good (see Table 1 for the

parameter estimates from this null model). In both the years 2010 and 2011, there were a few too

many states receiving grant totals in the range from $30 to $100 million, and too few receiving $100

million to $300 million, relative to the compound Poisson–gamma distribution. However, these are

not statistically significant differences,11 and are minor deviations compared with the errors impli-

citly made by some of the most commonly used approaches for dealing with this kind of data.
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Fig. 1 Comparison of state-level high-speed rail grant data to compound Poisson–gamma fit using 2010
and 2011 data (a) and comparison of 2011 fit and data to four estimation strategies using a lognormal
distribution (b). The four strategies are (A) dropping zeros, (B) replacing log 0 with log $1¼ 0, (C) treating

log 0 as censored at log $1¼ 0, and (D) treating log 0 as censored at $1 below the minimum nonzero
outcome.

9Republican governor Chris Christie of New Jersey rejected a tunnel project under the Hudson River in late 2010 that
had support from the federal government; however, that project is not in the data set because the funding for that
project predated the high-speed rail initiative begun with the ARRA.

10In the analysis, the general upgrade program on the Northeast Corridor is allocated among states according to the
projects that were later specified from this line item. These were upgrades to the Portal Bridge in New Jersey ($38.5
million), the B&P Tunnel in Maryland ($60 million), and the Baltimore-Washington International Airport Station in
Maryland ($9.4 million).

11The confidence bands on the empirical cumulative density encompass the fitted compound Poisson–gamma, but were
omitted from the plot for the sake of visual clarity.
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Figure 1b shows corresponding lognormal fits to the 2010 data (A) after dropping zeros,

(B) after replacing log 0 with log $1¼ 0, (C) treating log 0 as censored at log $1¼ 0, and (D)

treating log 0 as censored at $1 below the minimum nonzero outcome. Strategies (B) and (C)

perform extremely poorly because there are no observed grants between $1 and $1m. Assuming

a lognormal distribution when over half the data are at (or censored below) $1 implies that the

density of points in that range should be substantially higher than in the equivalently large log-scale

range between $1m and $1t, which in fact contains all of the nonzero data. With such a large

misspecification of the underlying data-generating process, replacing log 0 with log $1¼ 0 or using

the standard tobit with a truncation point at 0 leads to misleading inferences about marginal

covariate associations because it is the deviations from these null models that the covariates in a

regression model seek to predict. Strategy (D), which corresponds to a tobit in which the truncation

point is set just below the smallest nonzero outcome, is a far better fit to these data, and is likely to

be superior in other applications as well because it does not place the latent quantities that

generated the zeros at values far less than the observed nonzero data points. However, it is

strategy (A), dropping the zeros, that yields the best fit between the nonzero data and the lognormal

distribution.12 Young and Young (1975) provide a theoretical argument for why dropping zeros is

better than placing them at an arbitrary value, a result that is almost universally ignored in applied

political science research. Two equation selection models do not exactly correspond to any of these

strategies for fitting a lognormal to data with zeros, but they are closest to the strategies of dropping

the zeros or to using a tobit with a censoring point just below the lowest observed nonzero outcome.

Table 1 Compound Poisson–gamma regression model coefficients and confidence intervals for US

high-speed rail projects in January 2010 and June 2011

Parameter Year
Null model Single equation Double equation

MLE (95% CI) MLE (95% CI) MLE (95% CI)

�0 2010 19.89 (19.19 to 20.66) 16.45 (15.94 to 16.94) 17.61 (17.18 to 18.03)
2011 20.51 (19.69 to 21.46) 16.82 (16.19 to 17.43) 17.30 (16.70 to 17.88)

�log(pop) 2010 1.67 (1.26 to 2.06) 1.43 (1.14 to 1.71)
2011 1.49 (1.02 to 1.95) 1.32 (0.91 to 1.72)

�pres08 2010 �0.15 (�0.20 to �0.10) �0.05 (�0.09 to �0.01)

2011 �0.13 (�0.18 to �0.07) �0.10 (�0.15 to �0.04)
�gov11 2010 0.45 (�0.32 to 1.18) 0.03 (�0.75 to 0.77)

2011 �1.87 (�3.25 to �0.60) �2.21 (�3.33 to �1.13)

�0 2010 18.88 (18.24 to 19.49) 18.27 (17.52 to 19.09) 19.67 (18.90 to 20.54)

2011 18.57 (17.73 to 19.35) 18.62 (17.80 to 19.56) 20.39 (19.56 to 21.33)
� log(pop) 2010 �0.90 (�1.63 to �0.10)

2011 �0.47 (�1.24 to 0.36)

�pres08 2010 0.17 (0.09 to 0.24)
2011 0.12 (0.03 to 0.19)

�gov11 2010 �0.11 (�1.19 to 1.14)

2011 �1.82 (�3.11 to �0.28)

� 2010 1.72 (1.60 to 1.82) 1.70 (1.56 to 1.82) 1.74 (1.61 to 1.84)
2011 1.76 (1.64 to 1.86) 1.65 (1.49 to 1.80) 1.64 (1.48 to 1.79)

logðL=L0Þ 2010 0 21.04 23.65
2011 0 17.08 18.84

Note. 95% intervals are model-based profile confidence intervals.

12Note that the baseline for the plotted lognormal cdf is offset from zero to correspond to the fact that it is fit to only the
nonzero observations.
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When we shift to analyses with covariates, these differences in the degrees to which the

underlying null models fit the data become very important. Three state-level covariates are con-

sidered: “log(pop),” the mean-centered natural log of the state’s total population from the 2010

United States Census (range: �1.9 to 2.3); “pres08,” the deviations from 50% in the Republican

two-party presidential vote share from the 2008 general election (range: �23.0 to 16.6); and

“gov11,” the party of the state governor in 2011 (coded Republican ¼ 1, Democratic ¼ 0).13

These three variables are not intended to be exhaustive (Achen 2002), and their coefficients

should certainly not be interpreted causally on the basis of the regression results. However, as

basic measures of demand for transportation spending, general political alignment, and the specific

political inclination to accept grants for high-speed rail projects, these variables are associated with

a great deal of the variation in the observed award totals by state. Moreover, we know already that

there is a causal effect of having a Republican governor in 2011 on spending in 2011 (but not in

2010), so an appropriate regression method for these data should find evidence of that effect.
Table 1 shows the null, single, and double equation compound Poisson–gamma regression es-

timates for the project data from January 2010 and June 2011.14 Since the state population variable

is log transformed, the coefficient for that variable is interpreted as a power relationship between

state population and spending levels. A coefficient of 1 would correspond to total spending growing

proportionally to population: constant per-capita spending levels. Unlike the cases of general

transportation spending formulas and earmarks (Lee 2000; Lauderdale 2008), there is no small

state advantage in these high-speed rail grants. In fact, the coefficient estimates are significantly >1
in all but one specification. Holding the other variables fixed, more populous states received more

money per capita.
Increasing 2008 Republican vote share is associated with decreased spending, with each add-

itional percent of the two-party vote associated with a 5%–15% decline in spending, depending on

specification and year. These are large substantive associations: A coefficient of �0.10 implies that

in 2010 a typical state in which Obama received 45% of the two-party vote was awarded just 37%

as much high-speed rail construction spending as was awarded to a state in which Obama received

55% of the two-party vote, all else being equal. This association is compatible with multiple causal

hypotheses. Although political targeting of high-speed rail projects by the Obama administration is

possible, it would be difficult to imagine that the places with the most need/demand for high-speed

rail were not also the places where Obama performed best in 2008. As usual, there is no way to

distinguish between these (or other) causal mechanisms with a regression analysis, but the marginal

association itself can be clearly established.
The variable for having a Republican governor in 2011 does not significantly predict 2010

spending. This is a check for confounding, since the January 2010 project announcements

occurred before any of the governors elected in November 2009 or 2010 could have had any

impact on high-speed rail spending. In contrast, having a Republican governor in 2011 is

strongly predictive of lower high-speed rail spending in 2011, with such states receiving just 11%

of the spending received by states with Democratic governors in the single equation specification,

other covariates equal. As noted above, we already know the causal mechanism that gives rise to

this relationship: Three Republican governors rejected large quantities of high-speed rail funding at

the beginning of 2011.
The single and double equation models yield very similar estimates of the marginal associations.

The double equation model fits the data only slightly better than the single equation model, despite

having three additional parameters. A comparison of the AIC for these two models indicates a

preference for the simpler model because the extra parameters in the double equation model do

little to improve model fit.

13Lincoln Chafee, the independent governor of Rhode Island in 2011, is coded as a Democrat. Whereas Chafee was a
Republican when he served in the United States Senate, he was moderate in his voting, became an Independent after
leaving office, and supported Barack Obama in the 2008 election.

14Model-based, rather than robust, profile confidence intervals are reported because they are more conservative in this
case.
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For purposes of comparison, Table 2 shows the � coefficients from commonly applied data
analysis strategies that also yield loglinear marginal associations/effects: dropping zeros, replacing
zeros with log $1¼ 0, using a tobit model with a cutoff at zero, using a tobit model with a cutoff just
below the smallest observed nonzero outcome, and using a selection model estimated by maximum
likelihood.15 Unsurprisingly, given the terrible baseline fit of the null models (B) and (C), the log
dollar regression models based on replacing zeros with log $1¼ 0 and using a tobit model with that
value as the cutoff both perform extremely poorly. The coefficient values on the population and
presidential vote variables in these models are implausibly large in magnitude, and the estimates for
all variables are extremely uncertain.

The strategies of dropping zeros, using a tobit with a cutoff just below the smallest observed
nonzero outcome, and using a selection model all recover plausible estimates; however, each is
clearly inferior to the compound Poisson–gamma for making descriptive inferences about the
marginal associations of the covariates with the state-level grant totals. All three of these models
yield much wider confidence intervals than the compound Poisson–gamma. None of the three come
close to statistical significance on the governor variable, in part because these strategies estimate the
association with governor party only among states that received grants, rather than among all
states. Moreover, if the quantity of interest is a marginal association within the entire population,
including the zeros, these models do not provide the desired summary of the data.

4 Robustness to Error Distribution Misspecification

Evaluating the robustness of maximum-likelihood estimators to violations of model assumptions
requires careful specification of which assumptions might be of particular concern, as well as the
appropriate behavior of the estimator given the violation. In the case of the compound Poisson–
gamma regression model, this article has argued that the chief benefit of using the model is that it
recovers loglinear regression coefficients when zeros are present in the data. I have not argued that
the compound Poisson–gamma probability distribution is going to be precisely the correct one,
though in the case considered above it is closer to correct than available alternatives. Thus, if the
marginal associations estimated by the regression were very dependent on the assumption of the
compound Poisson–gamma error structure, the usefulness of the estimator would be greatly dimin-
ished. Therefore, the appropriate robustness check involves cases where the data-generating process
deviates from the assumed compound Poisson–gamma process, but in which the expected level of
the outcome remains a loglinear function of the regressors. Given this constraint on which kinds of
simulation studies are worth doing, I have identified three plausible kinds of violations that change
the error distribution around the expected outcome level, but do not change the scaling of the
expected outcome level as a function of the regressors.

First, we can test the robustness of the single-equation model when the double-equation model is
appropriate. In the following simulations, I consider cases where the covariate dependence of the
model is entirely in the size rather than the number of projects. Second, we can test the robustness
of the single and double equation compound Poisson–gamma models when the true data-
generating process is a compound Bernoulli-lognormal process (i.e., a binary selection model
with a lognormal outcome distribution for the nonzero outcomes). In the case where none of the
included regressors predict selection, the regression coefficients describing the marginal associations
with E[yi] describe loglinear relationships. Third, we can test the robustness of the compound
Poisson–gamma models when there is dependence between the Poisson and gamma components
of the generating process. Positive associations could arise if omitted variables increase both the
number and size of project allocations for certain units. Negative associations could arise if a
budget constraint mandates that units receiving more projects have smaller project size.

15The selection model is estimated by maximum likelihood without an exclusion restriction, which is generally unadvisable
and especially so in small samples because it relies on the functional form of the distributions for identification.
However, there is no plausible exclusion restriction given the variables under consideration. The estimated error cor-
relation for the two equations is extremely high, so in effect the estimates are the same as those of the estimator
proposed by Sartori (2003).
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Maximum-likelihood estimation on the basis of such a “correlated compound Poisson–gamma”
process is not feasible, but it is not difficult to generate correlated compound Poisson–gamma

variates.
The following procedure uses a bivariate gaussian copula function to generate a draw from

either a compound Bernoulli-lognormal or a compound Poisson–gamma in which there is correl-

ation between the constituent distributions that make up the compound distribution.16 First,
generate one draw from a standard normal distribution. Second, convert that standard normal

variate to its quantile (i.e., a uniform random variate), and convert the quantile to either the desired
Bernoulli random variate via the Bernoulli cumulative distribution function or a Poisson random

variate via the Poisson cumulative distribution function. The resulting draw is ni. If ni¼ 0, then
yi¼ 0. Third, if ni> 0, generate a series of ni draws from a univariate normal with mean and

variance chosen such that each of these draws and the initial standard normal draw form a bivariate
normal draw with mean vector equal to zero, variance equal to one, and covariances equal to 	.
Fourth, convert each of these ni normal random variates into either a lognormal or a gamma
random variate by converting to the normal quantile and then applying the appropriate cumulative

distribution function. Fifth, for the Poisson–gamma case, compute the sum of the gamma random
variates to give the correlated compound Poisson–gamma draw yi. Although an infinite variety of

other correlation structures are possible, this structure allows us to tune a single parameter 	2 [�1,
1] in order to assess the consequences of positive and negative correlations of the constituent

distributions.
One way to generate simulated data sets would be to base them on the data and estimates from

the high-speed rail example. In a typical application, this would be a good way to do a sensitivity

analysis. For the purposes of this article, however, the large marginal associations in the high-speed
rail data set make such an analysis a poor demonstration of model robustness. Consequently, I

simulate data sets with far more subtle relationships. I draw X from a multivariate normal with
mean vector [0, 0, 0] and a covariance matrix in which s1¼s2¼s3¼ 1, 	12¼ 0.25, 	13¼�0.50, and
	23¼ 0. I assume that the correct regression coefficients are �¼ [0.25, 0, 0].17 This “true” association
is moderate in scale, given the range of X1, so as to create a nontrivial test for the estimator. For the
compound Poisson–gamma generating process, I set �¼ 1, which yields 1/e¼ 36% zero observa-

tions; I set the Bernoulli probability for the selection model generating process to yield the same
fraction of zeros. For the compound Poisson–gamma generating process, I set the baseline size of

the gamma draws when X1¼ 0 to $1 million. For the compound Bernoulli-lognormal generating
process, I set the baseline size of the nonzero observations when X1¼ 0 to $1 million divided by

1� 1/e, which yields an identical scaling of the expected value. For the compound Poisson–gamma
generating process, n¼ 1 in the gamma distribution; for the compound Bernoulli-lognormal

generating process, s¼ 1 in the lognormal distribution. All of these values could be varied;
however, attempting to simulate model performance under all of the possibly relevant combin-

ations of parameter values quickly exits the realm of computational feasibility.

16Where � denotes a random draw from the given distribution, F�11 is either a Bernoulli or Poisson inverse cumulative
distribution function, F�12 is either a lognormal or gamma inverse cumulative distribution function, and � is the normal
cumulative distribution function, the following procedure generates the desired random variates:

nNi � Nð0; 1Þ ð10Þ

ni ¼ F�11 �ðnNi Þ
� �

ð11Þ

zNij � N ð	n
N
i ; 1� 	

2Þ ð12Þ

zij ¼ F�12 �ðzNij Þ
� �

ð13Þ

yi ¼

Pni
j¼1 zij if ni40

0 if ni ¼ 0
:

�
ð14Þ

17Because the X matrix has non-trivial correlation between the first covariate and the remaining two, this creates an
opportunity for the estimates to misattribute the association with X1 to X2 or X3.
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In Table 3, I report mean coefficient estimates based on one thousand simulated data sets of size

one hundred, for each of the twelve combinations of three correlation levels, two compound dis-

tributions, and two estimators (single and double equation). Both estimators are fit on the same

simulated data sets within each data-generating process. For both the compound Poisson–gamma
and compound Bernoulli-lognormal data-generating processes, I have tested copula correlation

levels of 	¼�0.8, 0, and 0.8. Bias is minimal across the simulation trials for both the single and

double equation estimators. If the true data-generating process has E yi½ � ¼ exi�, both estimators do

a reasonable job of recovering � even in these cases where the error structure around that mean

function is not the assumed independent compound Poisson–gamma distribution. There is some

evidence that the double equation estimator is slightly more robust against deviations from the
assumed error distribution, but both estimators are close enough to unbiased so as to make esti-

mator performance a negligible concern for most social scientific applications.
The uncertain small sample properties of misspecified maximum-likelihood estimators are

always a concern with models like the ones considered here. The presented simulations demonstrate

that the compound Poisson–gamma estimator returns approximately unbiased regression estimates

in the presence of several deviations from the assumed data-generating process, but only for a
particular set of parameter values, and only when the mean level is correctly specified. Although

more exhaustive simulation of performance under a wider variety of misspecifications and param-

eter values could be completed, these simulations do indicate that performance of the compound

Poisson–gamma regression estimators is not especially dependent on the exact data-generating

process. It is advisable that researchers using these methods do sensitivity analyses, conditional

on the relevant theoretical expectations and parameter values for their own studies.

5 Conclusion

The “zero problem” in log-dependent variable regression is only a problem if researchers are willing

to assume models that are substantively implausible. The compound Poisson–gamma model solves

this problem by changing the model to fit the data, rather than the other way around. The primary

value of the compound Poisson–gamma regression is that it allows scholars to generate interpret-

able descriptions of associations between covariates and the actual outcomes in their data. Where

widely used strategies either fail to recover plausible estimates, only estimate associations among
units receiving nonzero outcomes, or estimate associations in counterfactual populations, the

compound Poisson–gamma yields simple characterizations of marginal relationships across the

entire sample or population. Even in the case where there are very few zeros in the data, there is

little downside to using the compound Poisson–gamma regression model instead of a regression on

log spending. As �! 2, the Tweedie distribution approaches a gamma distribution and the point

mass at yi¼ 0 disappears. A gamma regression will generally behave similarly to a log-dependent
variable regression.

Table 3 Mean coefficients for single and double equation compound Poisson–gamma regression models

estimated on 1000 simulated data sets of size 100, under several deviations from the assumed data-
generating process (DGP)

DGP correlation: 	¼�0.8 	¼ 0 	¼ 0.8

Estimator: 1 Eq. 2 Eq. 1 Eq. 2 Eq. 1 Eq. 2 Eq.

Poisson-gamma DGP ��1 0.277 0.243 0.247 0.252 0.242 0.250
��2 0.003 0.003 �0.001 0.000 �0.002 0.001
��3 �0.002 �0.004 �0.009 �0.001 0.001 0.002

Bernoulli-lognormal DGP ��1 0.280 0.251 0.254 0.249 0.275 0.246
��2 0.001 �0.000 0.009 0.010 �0.009 �0.008
��3 �0.003 �0.004 �0.001 0.000 �0.005 �0.005

Note. The true marginal associations for the three regressors are �¼ [0.25, 0, 0].
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The choice between the compound Poisson–gamma and tobit or selection models should be

made in part on a case-specific evaluation. In certain applications, like the one considered here, the

underlying process that generates the data is in fact the aggregation of a small integer number of

projects of varying dollar size, and the compound Poisson–gamma is clearly appropriate. In other

applications, it may be more substantively defensible to model the outcome using other models,

though neither tobit nor selection models have the elegant loglinear coefficient interpretation of the

compound Poisson–gamma. Consequently, to the extent that descriptive inferences about the

marginal associations of the outcome with covariates across the whole sample/population are

desired, the compound Poisson–gamma is still a useful tool even if the underlying aggregation

process is not correct.
But researchers should not only look to the likely data-generating process when choosing a

regression model. The quantities of interest estimated by the compound Poisson–gamma are fun-

damentally different than those estimated by a tobit or selection model. A canonical application of

selection models in econometrics is the relationship between labor market entry decisions and

expected wage levels. When actual wage income is zero because an individual is choosing not to

enter the labor market, modeling her counterfactual wage is important for modeling her entry

decision (and vice versa). However, in some of the applications that political scientists have

applied selection models to, the corresponding counterfactual is of dubious interest. Consider the

case of foreign aid distribution. Although one can certainly hypothesize about the counterfactual

foreign aid that would have been received by a country, had it received foreign aid, such quantities

are only interesting if one has a model of foreign aid distribution that has a binary decision process

that might depend on the counterfactual aid level.18 Some theoretical models of foreign aid distri-

bution do in fact assume a binary decision about whether to offer aid that is dependent on the aid

level that would be offered (e.g., Dudley and Montmarquette 1976), but in most applications the

selection model is being used as a fix to deal with zeros, not because scholars have a theory that

involves counterfactual outcomes. As a result, authors end up worrying about identification re-

strictions that are only relevant if they care about identifying the marginal associations with

covariates under the counterfactual where all countries receive aid. If a researcher’s goal is to

describe marginal associations between actual foreign aid and the variables of interest, the selection

model’s counterfactual structure is counterproductive.
Although the discussion in this article has focused on the case of distributive spending by gov-

ernments to geographic entities (e.g., foreign aid, building projects, etc.), these are not the only

political science data where exact zeros appear in otherwise continuous, positive outcomes. For

example, political donation data have many zeros. In such cases, there is sometimes not only a

lower bound on donation ($0), but also an upper bound due to legal limits, which makes tobit

models with censoring on both sides seem particularly attractive. But there is still the same problem

with the interpretation of tobit models in this context, which is that they do not estimate marginal

associations for actual donations. Instead, they model marginal associations for the donations that

would be made in a world where arbitrarily large donations were possible.19 Sometimes a model of

the “propensity to donate” is sensible, but it is not clear that measuring marginal associations

with covariates within the population of counterfactual donations is always preferable to

violating the error distribution assumptions of the compound Poisson–gamma. In making

trade-offs between estimating substantively meaningful quantities of interest and having accurate

assumptions about error distributions, political scientists have perhaps been too inclined toward the

latter extreme.

18The tobit model is a special case of this kind of model, one where donors do not bother to make donations that would
have been smaller than some cutoff.

19If no log transformation is employed, the interpretation problem with using a tobit with a cutoff at zero is actually more
severe, since the associations are then estimated for the counterfactual where negative donations are allowed. Rational
political donors would prefer to donate arbitrarily large negative dollar amounts to their political opponents, so this
counterfactual is hardly a basis for meaningful estimates.

Benjamin E. Lauderdale398

 by guest on O
ctober 5, 2012

http://pan.oxfordjournals.org/
D

ow
nloaded from

 

http://pan.oxfordjournals.org/


References

Achen, C. H. 2002. Toward a new political methodology: Microfoundations and ART. Annual Review of Political Science

5:423–50.

Alesina, A., and D. Dollar. 2000. Who gives foreign aid to whom and why? Journal of Economic Growth 5(1):33–63.

Alesina, A., and B. Weder. 2002. Do corrupt governments receive less foreign aid? American Economic Review

92(4):1126–37.

Balla, S. J., E. D. Lawrence, F. Maltzman, and L. Sigelman. 2002. Partisanship, blame avoidance, and the distribution of

legislative pork. American Journal of Political Science 46(3):515–25.

Berthelemy, J.-C. 2006. Bilateral donors’ interest vs. recipients’ development motives in aid allocation: Do all donors

behave the same? Review of Development Economics 10(2):179–94.

Berthelemy, J.-C., and A. Tichit. 2004. Bilateral donors’ aid allocation decisions—a three-dimensional panel analysis.

Internation Review of Economics and Finance 13:253–74.

de Mesquita, B. B., and A. Smith. 2007. Foreign aid and policy concessions. Journal of Conflict Resolution 51:251–84.

Dollar, D., and V. Levin. 2006. The increasing selectivity of foreign aid, 1984–2003. World Development 34(12):2034–46.

Dudley, L., and C. Montmarquette. 1976. A model of the supply of bilateral foreign aid. American Economic Review

66(1):132–42.

Dunn, P. K. 2004. Occurrence and quantity of precipitation can be modeled simultaneously. International Journal of

Climatology 24:1231–9.

Dunn, P. K., and G. K. Smyth. 2008. Evaluation of Tweedie exponential dispersion model densities by Fourier inversion.

Statistics and Computing 18:73–86.

Fleck, R. K., and C. Kilby. 2001. Foreign aid and domestic politics: Voting in Congress and the allocation of USAID

contracts across congressional districts. Southern Economic Journal 67(3):598–617.

Fleck, R. K., and C. Kilby. 2006. How do political changes influence US bilateral aid allocations? Evidence from panel

data. Review of Development Economics 10(2):210–23.

Heckman, J. J. 1976. The common structure of statistical models of truncation, sample selection, and limited dependent

variables and a simple estimator for such models. Annals of Economic and Social Measurement 5:475–92.

Heckman, J. J. 1979. Sample selection bias as a specification error. Econometrica 47(1):153–61.

Jorgensen, B., and M. C. P. de Souza. 1994. Fitting Tweedie’s compound Poisson model to insurance claims data.

Scandanavian Actuarial Journal 1:69–93.

Kuziemko, I., and E. Werker. 2006. How much is a seat on the Security Council worth? Foreign aid and bribery at the

United Nations. Journal of Political Economy 114(5):905–30.

Lauderdale, B. E. 2008. Pass the pork: measuring legislator shares in Congress. Political Analysis 16:235–49.

Lee, F. E. 2000. Senate representation and coalition building in distributional politics. American Political Science Review

94(1):59–72.

Maizels, A., and M. K. Nissanke. 1984. Motivations for aid to developing countries. World Development 12(9):879–900.

McGillivray, M., and E. Oczkowski. 1992. A two-part sample selection model of British bilateral foreign aid allocation.

Allied Economics 24(12):1311–9.

Neumayer, E. 2003. Do human rights matter in bilateral aid allocation? A quantitative analysis of 21 donor countries.

Social Science Quarterly 84(3):650–66.

Sartori, A. E. 2003. An estimator for some binary-outcome selection models without exclusion restrictions. Political

Analysis 11(2):111–38.

Shono, H. 2008. Application of the Tweedie distribution to zero-catch data in CPUE analysis. Fisheries Research

93:154–62.

Smyth, G. K. 1989. Generalized linear models with varying dispersion. Journal of the Royal Statistical Society (Series B)

51:47–60.

Smyth, G. K. 1996. Regression analysis of quantity data with exact zeros. In Proceedings of the Second Australia-Japan

Workshop on Stochastic Models in Engineering, Techology, and Management, 572–80. Techology Management Center,

University of Queensland.

Smyth, G. K., and B. Jorgensen. 2002. Fitting Tweedie’s compound Poisson model to insurance claims data: Dispersion

modeling. Astin Bulletin 32(1):143–57.

Swan, T. 2006. Generalized estimating equations when the response variable has a Tweedie distribution: An application

for multi-site rainfall modeling. PhD thesis, University of Southern Queensland.

Tweedie, M. C. K. 1984. An index which distinguishes between some important exponential families. In Statistics:

Applications and new directions, eds. J. K. Ghosh and J. Roy, 579–604. Calcutta: Indian Statistical Institute.

Younas, J. 2008. Motivation for bilateral aid allocation: Altruism or trade benefits. European Journal of Political

Economy 24:661–74.

Young, K. H., and L. Y. Young. 1975. Estimation of regressions involving logarithmic transformation of zero values in

the dependent variable. American Statistician 29(3):118–20.

Compound Poisson–Gamma Regression Models 399

 by guest on O
ctober 5, 2012

http://pan.oxfordjournals.org/
D

ow
nloaded from

 

http://pan.oxfordjournals.org/

